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Abstract— This paper introduces the concept of Constant
False Alarm Rate (CFAR) in fire detection for multispectral
satellite data. A new algorithm is proposed, based on a technique
successfully applied for detection of extended objects in High
Resolution SAR images. It compares the pixel under analysis
with an adaptive threshold, suitably estimated from the pixels
surrounding the one under test, in order to ensure the CFAR
property. The proposed approach requires that the background
distribution is of Location Scale (LS) type or amenable to such a
distribution by a suitable transformation. MODIS data from the
4 µm channel are considered. A preliminary statistical analysis
is performed to verify if the Weibull distribution, compliant with
LS representation, can be adopted for background. MODIS cloud
and water masking are applied to identify those pixels to be
discarded before implementing the statistical analysis. Results
of fire detection are presented for different values of the system
parameters (censoring depth and false alarm rate) and compared
with the algorithm implemented in the NASA-DAAC MOD14.

I. INTRODUCTION

The MODIS active fire algorithms fall within the suite of
terrestrial products and, based on the original work by Kauf-
man and Justice [1], are continuously updated and modified
as, for instance in [2], [3]. These algorithms are based on
a combination of tests, using absolute thresholds or adaptive
thresholds related to global statistical parameters but are
unable to control the probability of false alarm. This property
is, on the other hand, highly desirable and widely implemented
in radar detection schemes operating under changeable con-
ditions of the surrounding environment. From this context
we draw the idea of implementing CFAR techniques suit-
ably modified for detecting thermal anomalies. The approach
proposed by [4], [5] will be redesigned in this paper with
application to multispectral satellite data acquired from the 4
µm MODIS channel. The procedure requires more accurate
hypotheses about the statistical distribution of the data and, in
particular, the satisfaction of the Location–Scale (LS) property.
A preliminary statistical analysis is carried out to show that
the background data are compatible with a Weibull distribution
that becomes of a LS type after a log-transformation. The core
of the algorithm consists in setting the adaptive threshold as
a function of the estimates of the distributional parameters, as
measured from a set of background data while maintaining
the CFAR property. Main comparison has been done with
enhanced Giglio algorithm [3], showing that our CFAR al-
gorithm achieves similar results. The paper is organized as
follows: in the next section, the architecture of the detector is
presented with its design issues. Particular attention is given to

pre-processing steps including background statistical analysis.
The background model is discussed in more details in Section
III where the parameters estimation is presented. In Section
IV results obtained by processing a set of real data are showed
and discussed by comparing them with the Giglio algorithm.

II. CFAR DETECTION OF THERMAL ANOMALIES

Thermal anomalies can be defined as conditions of unusual
(usually high) temperature. Looking at this definition some
questions arise such as: How high the temperature values
should be for having a thermal anomaly? What are the re-
liability parameters to account in defining thermal anomalies?
Indeed, the observed temperature is a function of many param-
eters as the sensor spatial resolution, the extension of overheat-
ing area inside resolution, influence of the atmosphere. Very
high temperatures are reasonably due to thermal anomalies but,
as the overall temperature of a cell becomes moderately warm,
choosing an adaptive threshold becomes of crucial importance.
Even more challenging would be the problem of defining the
cost of deciding for anomalies when they are not, or of not
detecting them when they are. With this aim, we present here
a detection algorithm where the False Alarm Rate is kept
Constant (CFAR). Formally, this requires that

PFA = Pr {X > T |H0} , (1)

is constant, where X is a random variable representing the cell
under test, H0 denotes the background-only hypothesis and T
is the adaptive threshold. Specific solutions to this problem
have been found when the data set belongs to some families
of distributions such as the LS [4] and the Compound Gaussian
[6]. Following [5], we consider here the case where the data
set, under H0, can be modeled as Weibull random variables
previously log-transformed to obtain a distribution of LS type.
It has been also demonstrated that CFAR is achieved under a
weaker hypotheses of a data set that is not Weibull but, anyway
LS, and in the case of not independent samples.

A. Scheme of the CFAR detector
Leaving the formal proofs (the interested reader may follow

references [4], [5] for a deeper insight), we report here the
main steps of the algorithm, Figure 1. From the image under
test, a reference window, that is a set of N samples, is taken
and the corresponding data, sorted in ascending order and
censored, are organized into a vector form. The operation,
denoted as censoring is here used to ensure protection against
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Fig. 1. Scheme of the CFAR detector.

self-masking effects due to the presence of extended thermal
anomalies inside the reference window. The last r samples
are discarded because they may contain fire pixels with higher
probability and the other N−r samples are used for estimating
the distributional parameters.

To proceed further in the definition of the processing stages,
we have an estimation block where the parameters of the
LS distribution are estimated. This is a critical point since
only equivariant estimators ensure that the CFAR property
is maintained [4] and not all estimators present the same
properties in terms of efficiency or computational complexity
[7]. We considered Best Linear Unbiased Estimators (BLUE)
which, achieve the minimum variance and are equivariant.
The minimization of the variance with the constraint of
unbiasedness leads to the estimators of the location and scale
parameters [8](

θ̂L

θ̂S

)
=
(
DT C−1

0 D
)−1

DT C−1
0 Y (2)

where Y is the vector of ranked and censored data, D =
(1 µ0) and µ0 and C0 are the mean vector and the covariance
matrix of the standardized ordered and censored statistics, i.e.
having zero location and unit scale parameters [5]. Finally, the
adaptive threshold is evaluated as

T = θ̂S(Y )γ + θ̂L(Y ) (3)

where γ is a constant value, the so called threshold multiplier,
chosen according to the design value of the probability of false
alarm PFA.

B. Selection of the threshold multiplier
The threshold multiplier is evaluated via Monte Carlo

simulation by generating M realizations of the test statistic
(Y − θ̂L)/θ̂S and evaluating the (1 − PFA)−quantile from
the empirical Cumulative Distibution Function (CDF). The
dimension of the reference set for the estimation of the
parameters is ruled by the homogeneity level of the data under
test and by the maximum dimension of the thermal anomalies,
with the understanding that a large sample set allows better
estimate of the background parameters and, hence, higher
detection probability.

III. STATISTICAL VALIDATION

Statistical analysis is made on MODIS channel 21 at 4 µm
to verify the assumption that the background distribution is

compatible with a three–parameter Weibull CDF

FX(x) = 1 − exp

[
−
(

x − δ

α

)β
]

α, β, δ > 0 , x ≥ δ (4)

where α, β and δ are the scale, the shape and the location
parameters, respectively. The usual way for verifying if a set
of data is compatible with a design distribution FX(x) is the
Kolmogorov Smirnov (KS) test [9]. The KS test requires that
the samples under test are independent, but this is generally
hard to achieve in remote sensed data that are usually non
Gaussian and correlated. This is also the case of MODIS data
[10] where the received radiances are intrinsically non negative
(and thus non Gaussian) and, at least for the thermal infrared
channels, the correlation length is of the order of several Km.
An alternative procedure is to resort to a distributional distance
between the theoretic and the empirical CDFs. Our aim would
be to make a joint ML estimation of α, β and δ, but the
solution is numerically cumbersome and the existence of local
minima may cause the final result to be different from the
global one [11]. In our implementation, we have introduced an
iterative procedure where the location parameter is estimated
using a linear extrapolation and the shape and scale parameters
are estimated via a simpler two-parameter ML algorithm.
Thus, the following steps have been implemented

Inizialization

1) Evaluation of the empirical CDF F̂X(x) from the sample
set, i.e. the couples (xi, yi), i = 1, · · ·N ;

2) evaluation of δ̂ at the first iteration as the x–intercept of
the linearly interpolated empirical CDF;

3) evaluation of the joint ML estimate of α and β;

Iterations

1) coordinates transformation zi = α̂ [− ln(1 − yi)]
1/β̂

such that the theoretical curve is now the linear function
z = x − δ;

2) evaluation of δ̂ at the i–th iteration as the x–intercept of
the linearly fitted samples (xi, zi).

3) evaluation of the joint ML estimate of α and β at the
i–th iteration;

Stopping condition
The estimated parameters at the i–th and (i − 1)–th iteration
differ for less than a predefined value ε. �

The estimation procedure has been applied for data vali-
dation in the region of interest and the Cramer-Von Mises
distance between distributions has been used as indicator of
discrepancy. The distance is evaluated as [9]

W 2 =
1

12N
+

N∑
i=1

(
F (X(i)) − 2i − 1

2N

)2

≤ N

3
(5)

where X(i) is the ith order statistic from the set of obser-
vations. Results are shown in Figure 2 where the distance
W is reported in a color scale over the map of the chosen
region. It is interesting to observe that fitting is generally
good except for a few windows corresponding to boundaries



between different background textures. This is also shown in
Figure 3 where the empirical and the theoretical CDFs are
plotted for two situations that we have considered as best
(Window A, in Figure 2) and worst (Window B, in Figure
2) cases. We observe that, in boundary regions, the overall
samples cluster in two groups as a consequence of the different
thermal behavior. The corresponding empirical distribution is
expected to be bimodal as appears in Figure 3 for the case of
poor fitting.

Fig. 2. Color mapped distances between empirical and theoretical CDFs.
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Fig. 3. Comparison between empirical CDFs in the best and worst case.

IV. ALGORITHM DESCRIPTION AND RESULTS

The fire detection algorithm is organized in the following
steps:

- Cloud mask and land/sea mask
- Window selection and sizing
- Logarithm transformation, ranking and censoring of data
- Parameter estimation and threshold setting
- Detection

These steps will be now better illustrated and presented,
together with the most significant results obtained from ap-
plication to a MODIS granule covering the Campania region

(Italy), acquired during Terra pass of July 19th 2004 and
received at the MARS ground station in Benevento. Data used
in the fire detection algorithm are from the 4µm channel, but
also auxiliary data from MOD35 product and MOD03 have
been used for cloud mask and land/sea mask.

Cloud mask and land/sea mask The first step in any fire
detection algorithm is the selection of a set of data that are
really significant in the detection stage, also excluding data that
may induce errors in the whole process. The land/sea mask is
thus a necessary step to select land data and is simply obtained
from NASA geolocation product MOD03. A more intricate
problem is the cloud rejection. In the present algorithm the
cloud mask product MOD35 is used for locating cloud pixels
that should be rejected in the following steps of the algorithm
but, in order to save those data that, flagged as “cloud”, may
be due to fire smokes, we have introduced a check on bit 8
in the cloud mask, indicating the possible presence of aerosol
[12].

Window selection and sizing The CFAR detection algo-
rithm requires the estimation of the scene parameters from a
reasonably (statistically) homogeneous region; the algorithm
also requires that the number of data used in the estimation
process is kept constant. For the case at hand, a set of 256 sam-
ples has been considered reasonable. Due to these contrasting
requirements a certain attention should be paid in clustering
the data set according to the background characteristics. In
this stage we have introduced a simple but effective procedure
where, starting from a first division of the whole image into
16 × 16 square windows, these regions are progressively
enlarged when the valid data in the window are less than 256
until exactly 256 valid pixels are found.

Logarithmic transformation, ranking and censoring of data
This step is necessary to make the data of brightness tempera-
ture at 4µm channel compatible with the hypotheses required
by the CFAR algorithm presented in Section II. First, the
estimate of the parameter δ is subtracted from data to obtain
a two parameter Weibull distribution. Then, a logarithmic
function is applied to transform the Weibull data, as verified
through the statistical analysis reported in Section III, into
Gumbel data with the desired Location Scale property. Data
in each window are then sorted to make possible a censoring
operation aimed at discarding a given number of outliers
that may correspond to thermal anomalies. The choice of the
censoring depth is often based on empirical considerations:
a reasonable rule is to discard a number of samples that is
approximately equal to the maximum number of fires expected
in the observation window. In particular we have considered,
as censoring depths, r = 0, 4, 8.

Parameter estimation and threshold setting Starting from
the ranked and possibly censored sample, the parameter
estimation and subsequent threshold setting are performed
according to the rules described in Section II and in the
reference [5]. Some details can be useful about the value of the
threshold multiplier γ that is related to the desired false alarm
probability and to the applied censoring depth. Results from
Monte Carlo simulation show that the curves are generally



Fig. 4. Results for thermal anomaly detection, colorbar represents BT4[K]

r c0 c1 c2

0 0.4651 -0.6067 -0.0443
4 0.3772 -0.6493 -0.0462
8 0.4051 -0.6343 -0.0436

TABLE I

COEFFICIENTS FOR EVALUATION OF THE THRESHOLD MULTIPLIER

clustered in the region of high PFA and thus, in this region,
the selection of the threshold multiplier is weekly dependent
on r. Otherwise, in the region of low values of PFA, curves
are much more influenced by the censoring depth. Results
have been interpolated with a polynomial function and the
following equation is used in the algorithm for setting the
threshold multiplier γ, according to the desired false alarm
probability PFA, in the range −6 ≤ log10 PFA ≤ −2:

γ = c0 + c1 log10 PFA + c2 (log10 PFA)2 (6)

where values of coefficient ci are reported in Table 1 for
different values of censoring depth r. The thresholds for the
final step are obtained from equation (3) for each window.

Detection In this final step the temperature data in each
window are compared with the corresponding threshold. The
detection has been performed for the three values of censoring
depth r = 0, 4, 8 and results have been compared with results
of MOD14 product. Figure 4 shows the fire detection with
r = 8 where MOD14 fires are marked with a magenta circle
and CFAR fires with a small red square. The agreement is
evident with only two differences: the fire at (lat 40.0720,
lon 15.3686) is detected by the CFAR algorithm but not by
MOD14 and in correspondence to the fire at (lat 41.3214,
lon 15.5841), detected by both MOD14 and CFAR algorithm,
there is another fire in an adjacent pixel detected only by
the CFAR algorithm. Finally the results obtained for different
censoring depths, not reported here for sake of shortness, show
that the fire at (lat 41.0436, lon 15.6751) was not detected
with lower values. This is an encouraging result for using the

censoring even though the choice of its value is an open issue.
For this reason a future work is foreseen with the application
of the CFAR algorithm to an area with many forest fires.

V. CONCLUSIONS

The preliminary validation of the proposed setup has shown
that the achieved results are similar to those obtained with
the latest NASA–DAAC MOD14 product where, however, the
false alarm rate is not guaranteed to be constant. A deeper
validation is under development using information from the
National Fire Guardianship. A second main improvement is
tied to a multiband investigation with a careful attention to
account for possible inter–bands correlation. Other areas of
investigation regard the following points:
1. Cloud mask and land/sea mask A deeper analysis should be
focused for a better usage of the bits from cloud mask, with
the aim of retaining thin clouds or smoke.
2. Window selection and sizing A preliminary data segmen-
tation, based homogeneity criterions, could result in more
accurate estimates.
3. Detection Performance of the algorithm for different values
of the censoring depth should be investigated, possibly having
knowledge about the ground truth.
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